

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Communication Protocol

This document describes the communications protocol for the bootypic repository

There are two primary layers that this document is concerned with, framing and command.
The framing layer is primarily concerned with delimiting the beginning of a packet along
with ensuring data integrity of the packet using a fletcher16 checksum. The command
layer is concerned with interpreting the payload of the frame so that the software layer
may respond accordingly.

Framing Layer

All frames have a Start of Frame (SOF) byte at the beginning and an End of Frame (EOF)
byte at the end. The bytes between the SOF and EOF comprise the data being transmitted.
Any byte that corresponds to the SOF, EOF, or Escape (ESC) characters will be escaped
and XORed so that they do not interfere with the overall transmission process. The last
two bytes of the data bytes will be the fletcher16 checksum of the payload.

Escaping

Any byte between the SOF and EOF that corresponds to SOF, EOF, or ESC will be replaced
by two bytes, the first will be the ESC byte and the second will be the data byte XORed
with the XOR value.

Structure

The structure, without escaping, is as follows:

[SOF] [dat0] [data1] [data2] [...] [dataX] [F16(0:7)] [F16(15:8)] [EOF]

Note that if F16 bytes correspond to special characters, they will be properly escaped.

If, for instance, data4 corresponded to the SOF byte, the stream would be modified as follows:

[data2] [data3] [ESC] [ESC_XOR ^ data4] [data5]

In this way, it is possible to give up a small amount of transmission efficiency in order to
be able to transmit the entire range of data.

Behavior

If a F16 value is correct, then the packet is forwarded up to the next software layer. If it
is incorrect, then the packet is discarded.

Special Characters

The special characters are the SOF, EOF, ESC, and ESC_XOR. These values are ONLY to be used
as part of the framing protocol. All payload bytes that correspond to these values are to
be escaped:

[SOF] 0xf7
[EOF] 0x7f
[ESC] 0xf6
[ESC_XOR] 0x20

Command Layer

The command layer may have multiple versions, which will be saved to the microcontroller at
compile time.

Command Structure

A typical command packet, stripped of framing information:

[reserve0] [reserve1] [CMD] [payload0] [payload1] [...] [payloadX]

The first two bytes are reserved for future use. They may contain any type of data the
user prefers. For the remainder of this document, these reserved bytes will be ignored.

CMD refers to a 1-byte command. The command will determine how the remainder of the payload
is interpreted. In some cases, there may be no additional bytes after the command, such as
in the CMD_START_APP command.

Behavior

The PC will typically be the master and the microcontroller will simply respond to the commands.
Many commands have no required response, such as CMD_ERASE_PAGE. Others that require a response
will simply embed the same command into the structure of the response.

When strings are being passed, they will be passed as ASCII bytes and transmitted with the null
string terminator \0. These are represented in the commands as a string with quotes.:

representation: "my str\0"
transmitted: [0x6d] [0x79] [0x20] [0x73] [0x74] [0x72] [0x00]

Command Set

Read Platform

Character: 0x00
Command Sets: 0.1

The CMD_READ_PLATFORM command instructs the microcontroller to return a string containing
the platform, which usually corresponds to a microcontroller part number:

master: [CMD_READ_PLATFORM]
response: [CMD_READ_PLATFORM] "dspic33ep32mc204\0"

Read Version

Character: 0x01
Command Sets: 0.1

The CMD_READ_VERSION command instructs the microcontroller to return a string containing
the instruction set that it supports:

master: [CMD_READ_VERSION]
response: [CMD_READ_VERSION] "0.1\0"

Read Row Length

Character: 0x02
Command Sets: 0.1

The CMD_READ_ROW_LENGTH command instructs the microcontroller to return the smallest row length
that can be programmed at one time:

master: [CMD_READ_ROW_LENGTH]
response: [CMD_READ_ROW_LENGTH] [length(7:0)] [length(15:8)]

Read Page Length

Character: 0x03
Command Sets: 0.1

The CMD_READ_PAGE_LENGTH command instructs the microcontroller to return the page erasure size
in instructions:

master: [CMD_READ_PAGE_LENGTH]
response: [CMD_READ_PAGE_LENGTH] [length(7:0)] [length(15:8)]

Read Max Program Memory Length

Character: 0x04
Command Sets: 0.1

The CMD_READ_PROG_LENGTH command instructs the microcontroller to return the program length,
which is the maximum address that may be programmed to:

master: [CMD_READ_PROG_LENGTH]
response: [CMD_READ_PROG_LENGTH] [length(7:0)] [length(15:8)] [length(23:16)] [length(31:24)]

Read Max Program Size

Character: 0x05
Command Sets: 0.1

The CMD_READ_MAX_PROG_SIZE command instructs the microcontroller to return the maximum programming
size that it will support in instructions:

master: [CMD_READ_MAX_PROG_SIZE]
response: [CMD_READ_MAX_PROG_SIZE] [length(7:0)] [length(15:8)]

Read App Start Address

Character: 0x06
Command Sets: 0.1

The CMD_READ_APP_START_ADDRESS command instructs the microcontroller to return the starting address
of the application. This will usually be 0x1000. This will be utilized for checking application integrity
during the verification stage.

master: [CMD_READ_MAX_PROG_SIZE]
response: [CMD_READ_MAX_PROG_SIZE] [address(7:0)] [address(15:8)]

Erase Page

Character: 0x10
Command Sets: 0.1

The CMD_ERASE_PAGE command instructs the microcontroller erase a page of flash memore starting
at the provided address.:

master: [CMD_ERASE_PAGE] [address(7:0)] [address(15:8)] [address(23:16)] [address(31:24)]
response: -

Read Address

Character: 0x20
Command Sets: 0.1

The CMD_READ_ADDRESS command instructs the microcontroller read a single value from flash memory
and to return that value.

master: [CMD_READ_ADDRESS] [address(7:0)] [address(15:8)] [address(23:16)] [address(31:24)]
response: [CMD_READ_ADDRESS] [address(7:0)] [address(15:8)] [address(23:16)] [address(31:24)]

[value(7:0)] [value(15:8)] [value(23:16)] [value(31:24)]

Read Max

Character: 0x21
Command Sets: 0.1

The CMD_READ_MAX command instructs the microcontroller read the maximum number of values from
flash memory and return them as an array of values. This allows for much more efficient reading
of memory:

master: [CMD_READ_ADDRESS] [address(7:0)] [address(15:8)] [address(23:16)] [address(31:24)]
response: [CMD_READ_ADDRESS] [address(7:0)] [address(15:8)] [address(23:16)] [address(31:24)]
 [value0(7:0)] [value0(15:8)] [value0(23:16)] [value0(31:24)]
 [value1(7:0)] [value1(15:8)] [value1(23:16)] [value1(31:24)]
 [...]
 [valueX(7:0)] [valueX(15:8)] [valueX(23:16)] [valueX(31:24)]

Write Row

Character: 0x30
Command Sets: 0.1

The CMD_WRITE_ROW command instructs the microcontroller to write an entire row of data, as defined
by the microcontroller datasheet, starting at the address. In many cases, a row consists of only 2
instructions, so it may not be very efficient.:

master: [CMD_WRITE_ROW] [address(7:0)] [address(15:8)] [address(23:16)] [address(31:24)]
 [value0(7:0)] [value0(15:8)] [value0(23:16)] [value0(31:24)]
 [value1(7:0)] [value1(15:8)] [value1(23:16)] [value1(31:24)]
 [...]
 [valueX(7:0)] [valueX(15:8)] [valueX(23:16)] [valueX(31:24)]

response: -

Write Max

Character: 0x31
Command Sets: 0.1

The CMD_WRITE_ROW command instructs the microcontroller to write an entire row of data, as defined
by the return value of READ_MAX_PROG_SIZE, starting at the address. This is usually a much more
efficient method of writing.:

master: [CMD_WRITE_ROW] [address(7:0)] [address(15:8)] [address(23:16)] [address(31:24)]
 [value0(7:0)] [value0(15:8)] [value0(23:16)] [value0(31:24)]
 [value1(7:0)] [value1(15:8)] [value1(23:16)] [value1(31:24)]
 [...]
 [valueX(7:0)] [valueX(15:8)] [valueX(23:16)] [valueX(31:24)]

response: -

Start Application

Character: 0x40
Command Sets: 0.1

The CMD_WRITE_ROW command instructs the microcontroller to start the application. Note that the
bootloader will no longer respond after the application is started.:

master: [CMD_START_APP]
response: -

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

